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FORMULA FOR THE FLOW RESISTANCE FACTOR

IN A PIPE WITH A SUDDEN EXPANSION

AT SMALL REYNOLDS NUMBERS

UDC 621.541T. Ya. Grudnitskaya, V. A. Lyul’ka,

and A. V. Shipilin∗

A formula for the flow resistance factors in a pipe with a sudden expansion of the cross section
at Reynolds numbers of 0.2 to 10 is obtained by numerical solution of the complete Navier–Stokes
equations for incompressible fluids. The flow resistance factors obtained using the derived formula
are compared to those found by numerical solution of the Navier–Stokes equations.
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For calculations of the local resistance factors of a cylindrical channel with a sudden expansion at small
Reynolds numbers (Re 6 10) and a small expansion ratio (D2/D1 6 3), Idel’chik recommended [1] the formula
ξ = 30/ Re irrespective of the diameter ratio D2/D1 and the channel lengths before and after the expansion.

We consider the local resistance of a channel in the form of two cylindrical pipes of different diameters
(Fig. 1). At the entrance to the pipe of diameter D1, there is Poiseuille flow with a parabolic velocity distribution
over the cross section [2] U1 = 2(1 − 4r̄2), where r̄ = r/D1 is the dimensionless current radius, and U1 = u1/w0

(U1 is the current velocity and w0 is the mean flow rate). At a large distance from the place of expansion Poiseuille
flow occurs that corresponds to the larger cross section of the pipe. Let D2/D1 = b; then in the pipe of diameter D2,
Poiseuille flow with the velocity distribution U2 = 2(b2 − 4r̄2)/b4 is established.

We designate the Reynolds number Re = w0D1/ν, where ν is the liquid viscosity. Then, the dimensionless
pressure gradients at the entrance and exit are equal to −32/ Re and −32/(Re b4), respectively.

In this formulation, the flow was studied numerically invoking the Navier–Stokes equations for incompressible
liquids. The total-pressure loss and the resistance factor were determined. The mathematical formulation of the
problem and the method of solution are described in [3, 4]. Here we analyze some calculation results, whose analysis
indicates the applicability of the formula derived below. Cross sections 1 and 2 (see Fig. 1) located at distances l1
and l2 upstream and downstream, respectively, from the cross-section change were chosen. In these cross sections,
the static pressure p and the velocity head ζU2/2 were determined numerically and used to find the resistance factor
(ζ is the dimensionless density). For Reynolds numbers 10 < Re < 200 and various D2/D1, the obtained values of
the resistance factor are tabulated in [3, 4].

Figures 2 and 3 give calculated distributions of the dimensionless pressure gradient along the channel length
along the streamline located near the symmetry axis. From these figures, it is possible to examine the pressure
variation. From the entrance cross section, in which there is a sudden expansion of the channel (denoted by a
prime), the pressure decreases under Poiseuille’s law. No perturbations propagate upstream, and the Poiseuille
flow is conserved with good accuracy until the channel expansion. Immediately behind the expansion, the pressure
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increases, reaches the maximum value, and then begins to decrease, entering the Poiseuille distribution corresponding
to the pipe exit diameter. This effect is differently manifested, depending on the value of Re. With increase in Re
numbers, the transitional region is enlarged and the maximum value of p increases, whereas at small Re numbers,
the transitional region is insignificant. The variation in the velocity head is shown in Fig. 4. At a rather large
distance downstream, the velocity head losses are determined only by the value of D2/D1 and do not depend on Re.
However, the values of Re influence the location and pattern of this transition. From Fig. 3, it is evident that with
increase in Re, the region of the transition is enlarged. However, at small Re numbers, this region is almost absent.

These facts underlie the derivation of the formula for the resistance factor in the presence of an expansion. It
is assumed that the transitional zone can be ignored and that the Poiseuille flow in the pipe of the smaller diameter
is followed by the Poiseuille flow corresponding to the larger pipe diameter.

Let us derive this formula. We calculate the values of ζU2
1 /2 at the entrance, where U2

1 is the mean squared
dimensionless velocity in the smaller diameter pipe. The value of U2

1 is calculated by the formula

U2
1 =

4
πD2

1

D1/2∫
0

2πru2
1 dr =

1/2∫
0

4(1− 4r̄2)28r̄ dr̄ =
4
3
.

We next calculate the value of U2
2 (at the exit) using the same formula, where U2

2 is mean squared dimen-
sionless velocity in the larger diameter pipe:

U2
2 =

4
πD2

1b
2

bD1/2∫
0

2πru2
2 dr =

4
b2

b/2∫
0

8
b8

(b2 − 4r̄2)2r̄ dr̄ =
4

3b4
.

The pressure gradient from the entrance cross-section to the place of expansion is determined from the formula

∆p1 = −32l1/ Re,
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TABLE 1
D2/D1 = 1.2

Re
Values of ξ for

l2 = 2 l2 = 4 l2 = 6 l2 = 8

0.2 427.81/472.00 659.44/703.48 775.26/934.96 1006.89/1166.44
1 85.35/94.81 131.68/141.11 154.85/187.41 201.18/233.70
2 42.55/47.67 65.72/70.81 77.30/93.96 100.47/117.11
10 8.36/9.95 13.00/14.58 15.32/19.21 19.96/23.84

TABLE 2
D2/D1 = 2.0

Re
Values of ξ for

l2 = 2 l2 = 4 l2 = 6 l2 = 8

0.2 259.08/270.94 289.13/300.94 304.16/330.94 334.21/360.94
1 51.41/54.94 57.42/60.94 60.42/66.94 66.43/72.94
2 25.46/27.94 28.47/30.94 29.97/33.94 32.98/36.94
10 4.88/6.34 5.48/6.94 5.78/7.54 6.38/8.14

TABLE 3
D2/D1 = 3.0

Re
Values of ξ for

l2 = 2 l2 = 4 l2 = 6 l2 = 8

0.2 242.61/246.91 248.55/252.84 251.52/258.77 257.46/264.69
1 48.10/50.17 49.29/51.36 49.88/52.54 51.07/53.73
2 23.81/25.58 24.40/26.17 24.70/26.77 25.29/27.36
10 4.62/5.91 4.74/6.02 4.80/6.14 4.92/6.26

where l1 is the dimensionless length of the pipe of diameter D1 and z is the dimensionless coordinate. It is assumed
that the pressure gradient in the pipe of diameter D1 is constant: dp/dz = −32/ Re. Similarly, assuming that the
pressure gradient in the wide pipe is constant and equal to dp/dz = −32/(Re b4), we obtain

p2 = − 32
Re

l1 −
32

Re b4
l2,

where l2 is the dimensionless length of the pipe of diameter D2.
The resistance factor is calculated as follows:

ξ =
2

ζU2
1

[(
p1 +

ζU2
1

2

)
−

(
p2 +

ζU2
2

2

)]
=

3
2

( 32
Re

l1 +
32

Re b4
l2 +

2
3
− 2

3b4

)
=

48
Re

(
l1 +

l2
b4

)
+ 1− 1

b4
. (1)

In the derivation of this formula, the diameter of the entrance pipe is set equal to unity; therefore, l1 and l2
should be normalized by its value.

Tables 1–3 give the resistance factors for Reynolds numbers Re = 0.2–10 and various values of D2/D1 [the
numerator contains the resistance factors obtained by numerical solution of the Navier–Stokes equations, and the
denominator contains the resistance factors obtained using formula (1)]. Here l1 = 1 and l2 = 2, 4, 6, 8.
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As can be seen from the tables, in the given range of Re and l2 for D2/D1 6 3, there is good agreement
between the values of ξ obtained by integration of the Navier–Stokes equations and those calculated by formula (1).
The maximum difference of 27% is observed for Re = 10. A comparison for Re = 10 shows that the resistance
factors obtained by formula (1) differ markedly form the value of ξ = 3 given in [1]. It is obvious that the factor ξ

depends on the Re, D2/D1, l1, and l2. For Re = 10, calculations using the proposed formula for l1 = 1, l2 = 2, and
D2/D1 = 1.2, 2, and 3 give values ξ = 9.95, 6.34, and 5.91. For l1 = 0.5 and l2 = 2, the corresponding values of ξ

are equal to 7.55, 3.94, and 3.5. These values are closer to the value ξ = 3 from [1]. However, an increase in l2 leads
to larger differences.
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